Adaptive cell-centered finite volume method for diffusion equations on a consistent quadtree grid
نویسندگان
چکیده
Models applied in image processing are often described by nonlinear PDEs in which a good approximation of gradient plays an important role especially in such cases where irregular finite volume grids are used. In image processing, such a situation can occur during a coarsening based on quadtree grids. We present a construction of a deformed quadtree grid in which the connection of representative points of two adjacent finite volumes is perpendicular to their common boundary enabling us to apply the classical finite volume methods. On the other hand, for such an adjusted grid, the intersection of representative points connection with a finite volume boundary is not a middle point of their common edge and standard methods cannot achieve a good accuracy. In this paper we present a new cell-centered finite volume method to evaluate solution gradients, which results into a solution of a simple linear algebraic system and we prove its unique solvability. Finally we present numerical experiments for the regularized Perona-Malik model in which we applied this new method.
منابع مشابه
Object-oriented Modelling of an Adaptive, Quadtree-based, Finite Volume Method for the Shallow Water Equations
The results of an investigation in developing a generalized toolkit for Quadtree based Finite Volume models, exemplarily applied on the Shallow Water Equations, are given in this report. The developed application model: (i) discretizes a given topography using a quadtreebased grid system and (ii) solves the Shallow Water Equations by a numerical method based on the Finite Volume Method on the a...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملShallow Flow Simulation on Dynamically Adaptive Cut-cell Quadtree Grids
A computationally efficient, high-resolution numerical model of shallow flow hydrodynamics is described, based on boundary-fitted adaptive quadtree grids. The numerical model solves the two-dimensional non-linear shallow water equations by means of an explicit second-order MUSCL-Hancock Godunov-type finite volume scheme. Interface fluxes are evaluated using an HLLC approximate Riemann solver. T...
متن کاملAn Adaptive Finite Volume Method for the Incompressible Navier-Stokes Equations in Complex Geometries
We present an adaptive, finite volume algorithm to solve the incompressible NavierStokes equations in complex geometries. The algorithm is based on the embedded boundary method in which finite volume approximations are used to discretize the solution in cut cells that result from intersecting the irregular boundary with a structured Cartesian grid. This approach is conservative and reduces to a...
متن کاملA level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids
Keywords: Level set method Epitaxial growth Diffusion Stefan problem Sharp interface Robin boundary condition a b s t r a c t We present a numerical method for simulating diffusion dominated phenomena on irregular domains and free moving boundaries with Robin boundary conditions on quadtree/ octree adaptive meshes. In particular, we use a hybrid finite-difference and finite-volume framework tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 42 شماره
صفحات -
تاریخ انتشار 2016